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Abstract: Chemicals management is focused around the hazard, exposure and risk assessment 
of single chemicals. This is a slow process which cannot keep pace with chemical innovation and 
development of use. Environmental monitoring focuses on few, and well-known, chemicals. As a 
consequence, the majority of all chemicals emitted to the aquatic environment remain unstudied, and 
so does their risk. We conclude that to understand how chemical pollution affects aquatic ecosystems, 
requires reformation of current chemicals management, moving away from the single chemical 
approach. It requires increased transparency regarding chemical content in materials, products and 
articles, and importantly, a management system that covers different aspects of the many unknowns 
related to chemical pollution of aquatic systems. This implies for instance, environmental monitoring 
that screens for a wide range of chemicals and effects, and that is able to detect more unexpected 
effects of chemical pollution than what is possible today. 
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Resumo: A gestão e o manejo de poluentes químicos são focados na periculosidade, exposição 
e avaliação de risco. Esse processo é lento e não acompanha o surgimento de novas substâncias e o 
desenvolvimento do seu uso. O monitoramento ambiental foca em poucas substâncias que são bem 
conhecidas. Consequentemente, a maioria das substâncias emitidas e seus efeitos nos ecossistemas 
aquáticos permanecem desconhecidos. Concluímos que para se entender como poluentes químicos 
afetam os ecossistemas aquáticos é necessária a reformulação da atual forma de gestão e manejo 
atual, abandonando a abordagem sobre avaliação individual dos poluentes. É necessária uma maior 
transparência sobre o conteúdo químico dos materiais e produtos em geral e, principalmente, que a 
gestão considere diferentes aspectos e as incertezas relacionados à poluição química em ecossistemas 
aquáticos. Isso implica, por exemplo, em práticas de monitoramento ambiental que avaliem ampla 
gama de diferentes poluentes e seus efeitos, viabilizando a detecção de mais efeitos inesperados de 
poluentes químicos do que se faz atualmente. 
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pesticides, chemicals in personal care products 
and food additives. It has been expressed that 
society is currently going through a “chemical 
intensification” due to the continuously increasing 
production and use of more advanced chemicals 
in everyday products (UNEP, 2013).

1.3. Increasing chemical use challenges society

Planetary boundaries define a safe operating 
space for humanity. The boundaries define 
how much of an antropogenic stressor Earth’s 
environmental systems can tolerate without causing 
irreversible harm (Rockström et al., 2009). One such 
boundary is the atmospheric concentration of 
CO2, beyond which Earth’s climate irreversibly is 
affected (Rockström et al., 2009). No boundary is 
defined for synthetic chemicals, but the scientific 
literature is rich in illustrations of how chemicals 
may threaten the environment, such as diminishing 
bee populations due to the use of neonicotinoids 
(EFSA, 2013). Society faces an urgent challenge 
in understanding how chemicals can be used 
sustainably without causing irreversible harm to 
the environment. Yet, effects of chemical pollution 
on ecosystem functioning remain understudied 
(Bernhardt  et  al., 2017) and the question is 
whether we actually have tools to understand how 
environmental systems are affected by synthetic 
chemicals (Figure 1).

The aim of this work is to identify and discuss 
current limitations in chemicals management 
and to highlight promising approaches for 
improvement. We discuss hazard and exposure 
assessments with the main focus on protection 
of the aquatic environment. We mainly base our 
analysis on EU chemicals and water legislations, 
with the assumption that the European case offers 
examples that can be applied on other parts of 
the world.

2. Weaknesses in Current Chemicals 
Management

2.1. Outdated hazard criteria do not capture 
modern chemicals

Current chemicals legislation is built around 
the identification of hazardous substances which’ 
dispersion in the environment should be minimized, 
and hence regulated and phased out when 
socio-economic consequences are deemed acceptable. 
Hazard criteria include the properties environmental 
persistence, potential to bioaccumulate, and toxicity. 
The practices in chemical hazard assessment 
were originally designed to target chemicals with 

1. Introduction

1.1. Chemical use in a changing world

Our modern society relies on the use of 
synthetic chemicals, driven by for instance a 
need for curing disease, controlling pests and 
enhancing material properties. An unwelcome 
side-effect is contamination of aquatic environments 
by man-made hazardous compounds, which 
consequently has been on the environmental agenda 
for half a century (Carson, 1962; Jensen  et  al., 
1969). Our awareness of risks associated with 
chemicals has evolved over time and with that 
chemicals legislation and management, but also 
the use of chemicals (Figure  1). In pace with 
global population growth, economic development 
and innovation, global chemical production 
has continuously increased, and is expected to 
increase in the future (CEFIC, 2018; Wilson & 
Schwarzman, 2009). The increase over time in 
production of synthetic chemicals since the 1950’s 
can be added to the list of exponentially increasing 
socio-economic indicators of what has been called 
“the Great Acceleration” (Steffen et al., 2015), and 
even outpaces other agents of global change, such 
as rising atmospheric CO2 concentrations, nutrient 
pollution, habitat destruction and biodiversity loss 
(Bernhardt et al., 2017).

1.2. High numbers of chemicals in use

The exact number of chemicals in use is 
unknown. There are about 348 000 regulated 
chemicals  g lobal ly  (CAS, 2018).  In the 
European Union (EU), there are currently 
about 21 400 chemicals registered for use in 
industrial applications (ECHA, 2018). In addition, 
there are other compound groups covered by 
specific legislation such as pharmaceuticals, 

Figure 1. Emissions of well-known persistent organic 
pollutants (POPs) have decreased over time, whereas 
modern chemical use and diversity of applications 
increase, and with that potential risk caused by chemicals.
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physicochemical properties similar to those of the 
persistent organic pollutants (POPs), such as DDT, 
as scientists produced evidence for their occurrence 
in and harm to the environment in the 1960’s 
and 1970’s (Matthies  et  al., 2016). Hence, both 
assessment of chemicals placed on the market, as 
well as monitoring actions have had a great focus on 
POP-type chemicals for decades. Today, chemicals 
in commerce have more diverse applications and 
span a wider range of physicochemical properties 
and legislation needs to evolve to keep up with this 
development (McLachlan, 2018; Reemtsma et al., 
2016).

2.2. Single chemical approach is slow and simplistic

A major drawback of current chemicals 
regulation is that most chemicals are assessed 
individually, which is a slow process (European 
Commission, 2018), and not fit to keep up with 
chemical innovation and development of use. 
Further, it is commonly highlighted that chemicals 
occur in mixtures and may have additive or 
synergistic (or antagonistic) effects not captured 
in current risk assessments (SCHER, 2012). 
Transformation products formed after emissions to 
the environment are part of the mixture of chemicals 
but their contribution to risk is not properly assessed 
(Escher & Fenner, 2011).

2.3. Few endpoints are assessed and non-toxic effects 
ignored

Toxicity assessments are carried out on few 
organisms, with focus on few toxicity mechanisms 
(called endpoints). The number of endpoints that 
could be affected by a certain substance or mixture 
is however endless and it is impossible to test all 
of them. This means that in principle, current 
management practice requires that effects on an 
ecosystem or global scale is anticipated based on 
only a few experiments with e.g. algae and Daphnia. 
One example that highlights the challenge to 
extrapolate risk from toxicity assessments to the real 
world is the unexpected near extinction of vultures 
feeding on cattle carcasses in India and Pakistan 
due to treatment of cattle by the anti-inflammatory 
painkiller diclofenac (Oaks et al., 2004). Adverse 
effects on Arctic organisms caused by chemicals 
used in agriculture or industry at temperate or 
tropical latitudes highlight the global aspect of 
contamination (AMAP, 2016). In addition to 
being toxic, chemicals can cause non-toxic effects 
and thereby harm essential processes in the 
environment, such as with the thinning of the 

ozone layer caused by chlorofluorocarbons used 
as refrigerants (MacGarvin et al., 2002). There is 
currently no mechanism in European legislation 
that aims at identifying chemicals that may exert 
non-biological effects to environmental systems.

2.4. Environmental monitoring: focus on few 
chemicals

In addition to hazard assessments based on 
inherent chemical properties, observations of effects 
and occurrence of chemicals in the environment 
constitute an important part of chemicals 
management. Such data provide information on 
current and past concentrations, which form the 
basis for assessments of environmental health 
and opportunities to follow changes over time. 
A fundamental weakness of monitoring as applied 
today is that the analytical methods require 
that you know what you look for. This so called 
target chemical analysis is expensive, and thus 
society needs to prioritize which chemicals to 
monitor. Currently, a great focus is on already 
well-known and in many cases regulated chemicals 
(Sobek  et  al., 2016). Problems associated with 
such prioritizations become evident from the EU 
water legislation (Water Frame Work Directive), 
which builds on the determination of ecological 
and chemical status of all waterbodies. Chemical 
status is determined through the calculation of 
risk quotients for a set of predefined priority 
substances (currently  45  for the entire union) 
(European Commission, 2000). At the same time, 
more than 900 synthetic chemicals are known to be 
present in inland surface water (Dulio et al., 2018) 
although this may just be the tip of the iceberg. 
Still, concentrations and quality standards for the 
limited list of priority substances govern decisions 
regarding need of action to improve chemical 
status. Currently, 38% of all EU waterbodies 
have a chemical status that do not comply with 
good status criteria, but only 3% fail to comply 
if two ubiquitous compounds/compound groups 
(the flame retardants PBDEs and mercury) are 
excluded from the evaluation (EEA, 2018). Hence, 
the addition or removal of only few chemicals can 
change the perception of the environmental health 
of a waterbody, and consequently, the strategy has 
been questioned (Brack et al., 2017, 2018).

2.5. No chemical comes alone

Problems arising from our limited knowledge 
of what chemicals are actually present in the 
environment, and our focus on defined lists 
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of priority substances, are underlined by the 
common observation that biological effects 
measured in natural waters are far from explained 
by the chemicals typically included in monitoring 
programs or on priority lists (Neale  et  al., 2017; 
Tang et al., 2013). For instance, scientists recently 
demonstrated that the toxicity predicted based on 
64 chemicals (including pharmaceuticals, pesticides 
and chemicals from consumer products) observed 
in monitoring programs corresponded to less than 
1% of the observed non-receptor mediated toxicity 
in Australian drinking water (Tang et  al., 2013). 
At the same time, Carvalho  et  al. (2014) found 
that a mixture of selected priority substances at 
their set thresholds for chronic effects, i.e. “safe” 
concentrations, in fact exerted significant effects on 
several endpoints in the applied suit of toxicity tests, 
highlighting the importance of addressing mixture 
effects when setting toxicological thresholds. This 
type of finding questions the relevance of the set 
threshold levels and again demonstrates the inherent 
uncertainty of a regulatory system that relies on 
individual assessment of few chemicals and few 
endpoints.

2.6. Effect monitoring provides a more holistic view 
but cannot tie effect to chemical(s)

Effect monitoring traditionally aims at gathering 
data on how organisms in the field are affected by 
stressors, and relies on observations of indicator 
species. In that perspective it provides a more holistic 
approach than measuring chemicals one by one, as 
observed effects can be the result of exposure to “all” 
chemicals present in the studied environment. Only 
few effect-based monitoring methods pin point 
effects of specific compounds (HELCOM, 2017). 
The usefulness of effect monitoring for determining 
chemical status and guiding management actions is 
also limited by the fact that the effect may be caused 
or enforced by other pressures in the environment, 
both biotic and abiotic (Zwart et al., 2018). To be 
guiding in management actions, further analyses to 
identify if/which chemicals are responsible for the 
observed effect may be required.

2.7. Grand challenges of modern chemicals 
management

Improving sustainable chemical use and 
innovation is challenging and involves many 
unknowns. In broad, it boils down to three grand 
challenges that society is facing in the progress 
towards protecting and understanding how the 
aquatic environment is affected by chemical 

pollution: i) identifying and regulating chemicals 
that should not enter the environment; ii) finding 
out which chemicals the environment is already 
exposed to; and iii) adequately linking data on total 
chemical exposure to ecological risk (Figure 2).

3. Science-based Approaches for Improved 
Chemicals Management

3.1. Avoid emitting chemicals that do not degrade

In the light of the realization that our system 
for chemical risk assessment will always suffer 
from large uncertainties and incompleteness, 
scientists have advocated a “better safe than sorry” 
approach (MacGarvin  et  al., 2002). It is argued 
that persistence in the environment should have a 
stronger emphasis in risk assessment, as persistent 
chemicals will remain in the environment for a 
very long time and accumulate as long as emissions 
continue (Reemtsma  et  al., 2016). Effects of 
chemicals that are degradable in the environment 
are reversible when sources are cut (MacLeod et al., 
2014; Persson  et  al., 2013), whereas potential 
effects of persistent chemicals are irreversible, as the 
chemical will remain for decades, or even centuries 
to come in the environment. The industrial 
chemicals polychlorinated biphenyls (PCBs) 
offer an example of the irreversibility of potential 
effects caused by persistent chemicals. PCBs were 
banned almost globally in the 1970s-1980s and 
environmental concentrations have declined since 
then (AMAP, 2016). In the 1980s they were a 
major cause for e.g. declining seal populations in 
the Baltic Sea (Roos  et  al., 2012). Due to their 
environmental persistence, however, they still 
circulate the environment (Wania & Su, 2004), 
and it was recently demonstrated that killer whale 

Figure 2. Society’s chemicals management needs to 
improve in order to reduce risk caused by chemicals in 
aquatic ecosystems.
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populations near industrialized regions may in fact 
decline to extinction due to PCB-mediated effects 
on reproduction (Desforges et al., 2018).

3.2. Suspect screening: measuring what is there

Recent advancements in analytical chemistry 
open up for approaches that address the many 
unknown chemicals in the environment through 
screening of a high number of chemicals at the 
same time. Suspect screening is based on libraries 
containing molecular structure information on 
known chemicals used as references to identify 
chemicals in a sample, whereas non-target screening 
starts without any a priori information (Blum et al., 
2017; Li  et  al., 2017; Schymanski  et  al., 2015). 
Rigorous non-target screening is still a complex 
and time-consuming task. Suspect screening is 
limited to the number and range of chemicals in 
the library, which may be skewed towards chemicals 
or compound classes that are already considered 
of environmental concern. Still, this is a powerful 
tool that can help identify many chemicals in the 
environment to a lower cost than traditional target 
analysis (Brack et al., 2018).

3.3. Exposure modelling: predicting what is there

Another approach to identify the chemicals 
amongst the thousands in commerce that warrant 
further risk assessments is to model emissions 
and exposure. Many efforts have aimed to extract 
potentially hazardous chemicals from big data sets 
of chemical structure information using models to 
predict physical chemical properties, which govern 
transport and ultimate fate in the environment 
(Arnot  et  al., 2012; Brown & Wania, 2008; 
McLachlan et al., 2014; Muir & Howard, 2006; 
Nendza et al., 2013; Reppas-Chrysovitsinos et al., 
2018). Although a useful concept, the strategy is 
limited by poor availability of data on emissions 
and use of chemicals and thus the step from 
hazardous property identification to estimation of 
environmental risk is challenging. As a consequence, 
modeled environmental concentrations can end 
up having uncertainty ranges of several orders of 
magnitude (McLachlan et al., 2014), which is of 
little help in risk assessments. Increased transparency 
on produced volumes and use of chemicals would 
significantly improve the applicability of exposure 
modelling.

3.4. Using big data to build proxies for emissions

Recently, the possibilities of using other 
indicators of chemical pollution have been explored. 
In one study, data on import and production 

of manufactured products in the EU over time 
(2003-2016) was combined with data on chemical 
content of the products, with the aim to link 
consumption patterns with chemical emissions 
(Bolinius et al., 2018). Data on chemical content 
in materials, articles and products however needs 
to be improved in order to open up for this type 
of indicator. In a similar manner, (Froemelt et al., 
2018) demonstrate how data on income and 
socioeconomic factors can be used together with 
a Life Cycle Assessment to investigate how carbon 
emissions down to family or single person level 
are related to life style factors. Improved data on 
chemical content in manufactured products would 
open up for this kind of analysis also for chemicals.

3.5. Specific toxicity: Pareto’s rule rules. Or does it?

It has been observed that for endpoints 
that address toxicity exerted through a specific 
mechanism, a small number of chemicals out 
of a broad mixture is often responsible for the 
toxic effect (Holmes et al., 2018; Posthuma et al., 
2018; Tang et al., 2013), apparently following the 
Pareto principle stating that commonly 80% of 
an effect can be related to 20% of the chemicals 
(Kortenkamp  et  al., 2014). Which 20% of the 
chemicals that are responsible for the effect depends 
on the applied toxicity test (Malaj  et  al., 2014). 
Hence, such findings demonstrate that also for 
mixtures, the risk depends on what endpoints are 
assessed. For specific endpoints, combining data 
on occurrence of chemicals with biomonitoring 
tools to identify the drivers of toxicity is a powerful 
approach, currently going through major technical 
advancements (Brack  et  al., 2018; Jahnke  et  al., 
2018; Neale et al., 2017).

3.6. Baseline toxicity: how much chemical pollution 
can the environment tolerate?

An important toxicity pathway for organic 
chemicals in many organisms is their penetration 
into the cell membrane lipid bilayer causing loss of 
cell integrity (Schwarzenbach et al., 2003). This is 
the mechanism underlying baseline (non-receptor 
mediated) toxicity. Many environments are primarily 
exposed to chemicals below the threshold level for 
compound-specific toxicity and on a global scale, 
baseline toxicity may determine the overall toxic 
effect exerted by mixtures of innumerable chemicals 
(Escher et al., 2002). Baseline toxicity is additive 
and directly related to chemical activity which is 
also additive (Gobas  et  al., 2018; Mackay  et  al., 
2011) and relates chemical concentration to its 
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maximum solubility in the environmental media. 
Chemical activity offers an additional concept to 
link exposure of complex mixtures to effects and is 
a proposed next-generation tool in monitoring that 
can be used to evaluate the total chemical burden 
of environmental matrices (Gobas et al., 2018).

3.7. Expect the unexpected

The threat of the many unknown chemicals 
has been discussed lately as part of the planetary 
boundary concept (MacLeod  et  al., 2014; 
Persson et al., 2013). One condition for chemicals 
to pose a planetary boundary threat is that they have 
a disruptive effect on an essential environmental 
process (Persson  et  al., 2013). For example, the 
toxicity of pharmaceuticals to primary producers 
has been highlighted as a mechanism by which 
fundamental processes in the aquatic environment 
may be impacted (Guo  et  al., 2015). Assessing 
different types of chemical stress, looking for the 
unexpected and not only continuing with what was 
done in the past (Grandjean et al., 2011), is one 
component of environmental monitoring that needs 
to be further developed to detect more unexpected 
signs of chemical pollution.

4. Outlook

Novel tools and approaches are available in 
chemical hazard and exposure assessment; none 
of them is perfect, but they offer improvements 
compared to the current regulatory system, and 
importantly, will help move us away from the 
single chemical approach. Improved information 
on chemical content in materials, products and 
articles is necessary in order to reduce the many 
unknowns in predictions of emissions of chemicals. 
Despite substantially improved hazard and risk 
assessment procedures, we must acknowledge that 
no management system will be able to catch all 
potential risk caused by hazardous chemicals, as 
both presence of chemicals and in particular their 
potential effects are difficult to predict. To increase 
our chances of sufficient environmental protection 
requires a system that covers different aspects of the 
unknowns. It also highlights the need for strong 
proactive risk assessment procedures that minimize 
emissions of hazardous chemicals with a potential 
to cause irreversible effects in the environment. 
The great challenges ahead require that scientists 
from several disciplines work together with 
regulators, decision makers and industry to make 
progress towards understanding not only which 
chemicals are out there, but also what harm they 
may cause.
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